Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

نویسندگان

  • J. Greil
  • S. Assali
  • Y. Isono
  • A. Belabbes
  • F. Bechstedt
  • F. O. Valega Mackenzie
  • A. Yu. Silov
  • E. P. A. M. Bakkers
  • J. E. M. Haverkort
چکیده

Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient water reduction with gallium phosphide nanowires

Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This i...

متن کامل

Direct Band Gap Wurtzite Gallium Phosphide Nanowires

The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexago...

متن کامل

Molecular Motor Propelled Filaments Reveal Light-Guiding in Nanowire Arrays for Enhanced Biosensing

Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluo...

متن کامل

Raman spectroscopy and structure of crystalline gallium phosphide nanowires.

Gallium phosphide nanowires with a most probable diameter of approximately 20.0 nm and more than 10 microns in length have been synthesized by pulsed laser vaporization of a heated GaP/5% Au target. The morphology and microstructure of GaP nanowires have been investigated by scanning electron microscopy and transmission electron microscopy. Twins have been observed along the crystalline nanowir...

متن کامل

Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis.

Gallium phosphide (GaP) nanowire photocathodes synthesized using a surfactant-free solution-liquid-solid (SLS) method were investigated for their photoelectrochemical evolution of hydrogen. Zinc as a p-type dopant was introduced into the nanowires during synthesis to optimize the photocathode's response. Investigation of the electrical properties of Zn-doped GaP nanowires confirmed their p-type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016